
CS103 Handout 31
Spring 2017 May 12, 2017

Problem Set 6

This sixth problem set explores the regular languages and their properties. This will be your first
foray into computability theory, and I hope you find it fun and exciting!

As always, please feel free to drop by office hours, ask on Piazza, or email the staff list if you have
any questions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, May 19 at the start of class.

2 / 6

Problem One: Constructing DFAs
For each of the following languages over the indicated alphabets, construct a DFA that accepts precisely
the strings that are in the indicated language. Your DFA does not have to have the fewest number of states
possible.

Please use our online tool to design, test, and submit your answers to this problem. Handwritten or
typed solutions will not be accepted. To use the tool, visit the CS103 website and click the “DFA/NFA
Editor” link under the “Resources” header. If you’re planning on submitting this assignment in a pair, in
your GradeScope submission, please let us know the SUNetID (e.g. htiek, annasaps) of the partner who
submitted the DFAs so that we can match the problem set to the submitted answers.

As a note, we will use an autograder to check your answers for this problem, so be sure to test your solu-
tions before you submit!

i. For the alphabet Σ = {a, b, c}, construct a DFA for the language { w ∈ Σ* | w contains exactly
two cs. }

ii. For the alphabet Σ = {a, b}, construct a DFA for the language { w ∈ Σ* | w contains the same
number of instances of the substring ab and the substring ba }. Note that substrings are allowed
to overlap, so aba ∈ L and babab ∈ L.

iii. For the alphabet Σ = {a, b, c, …, z}, construct a DFA for the language { w ∈ Σ* | w contains the
word “cocoa” as a substring }. *

iv. Suppose that you are taking a walk with your dog along a straight-line path. Your dog is on a
leash that has length two, meaning that the distance between you and your dog can be at most two
units. You and your dog start at the same position. Consider the alphabet Σ = {y, d}. A string in
Σ* can be thought of as a series of events in which either you or your dog moves forward one
unit. For example, the string “yydd” means that you take two steps forward, then your dog takes
two steps forward. Let L = { w ∈ Σ* | w describes a series of steps that ensures that you and your
dog are never more than two units apart }. Construct a DFA for L.

Problem Two: Constructing NFAs
For each of the following languages over the indicated alphabets, construct an NFA that accepts precisely
the strings that are in the indicated language. Please use our online system to design, test, and submit
your automata; see above for details. As before, please test your submissions thoroughly!

i. For the alphabet Σ = {a, b, c}, construct an NFA for the language { w ∈ Σ* | w ends in a, bb, or
ccc }.

ii. For the alphabet Σ = {a, b, c, d, e}, construct an NFA for the language { w ∈ Σ* | the last charac-
ter of w appears nowhere else in w, and |w| ≥ 1 }.

iii. For the alphabet Σ = {a, b}, construct an NFA for the language { w ∈ Σ* | w contains at least two
b's with exactly five characters between them }. For example, baaaaab is in the language, as is
aabaabaaabbb and abbbbbabaaaaaaab, but bbbbb is not, nor are bbbab or aaabab.

* DFAs are often used to search large blocks of text for specific substrings, and several string searching algorithms are built
on top of specially-constructed DFAs. The Knuth-Morris-Pratt and Aho-Corasick algorithms use slightly modified DFAs to
find substrings extremely efficiently.

3 / 6

Problem Three: ℘(Σ*)
Let Σ be an alphabet. Give a short English description of the set ℘(Σ*). Briefly justify your answer. (We
think that there is a single “best answer.” You should be able to describe the set in at most ten words)

Problem Four: Concatenation, Kleene Stars, and Complements
The regular languages are closed under a number of different operations. This problem explores some
properties of those operations.

i. Prove or disprove: if L is a nonempty, finite language and k is a positive natural number, then
|Lk| = |L|k. Here, the notation |L|k represents “the cardinality of L, raised to the kth power,” and the
notation |Lk| represents “the cardinality of the k-fold concatenation of L with itself.”

ii. Prove or disprove: there is a language L where (L*) = (L)*.

Problem Five: Arden’s Lemma
When you were first learning algebra, you probably learned a family of techniques to solve equations in
which a variable x was on both sides of an equals sign. For example, you probably learned how to look at
a formula like

x2 = ax + b

and to use the quadratic formula to solve for x.

It's also possible to set up equations involving some unknown that appears on both sides of an equals sign,
but where the quantities involved are languages rather than numbers. For example, if A and B are lan-
guages, you may want to determine what languages X satisfy the equality

X = AX ∪ B.

Just as the quadratic formula is a useful tool for solving for x given a quadratic equation, in formal lan-
guage theory there's a result called Arden's lemma that's useful for solving for X in an equation of the
above form. Specifically, Arden's lemma says that, given the equality X = AX ∪ B, you are guaranteed that

A*B ⊆ X.

In this problem, we're going to ask you to prove Arden's lemma.

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L₁ and L₂ are lan-
guages over an alphabet Σ, then the concatenation of L₁ and L₂, denoted L₁L₂, is the language

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }.

From concatenation, we can define language exponentiation of a language L inductively as follows:

L0 = {ε} Ln+1 = LLn

You may find these formal terms helpful in the course of solving this problem.

i. Let A and B be arbitrary languages over some alphabet Σ. Prove, by induction, that if X = AX ∪ B,
then AnB ⊆ X for every n ∈ ℕ. Please use the formal definitions of concatenation, language expo-
nentiation, union, and subset in the course of writing up your answer.

If you'll recall, we formally defined the Kleene closure of a language L over Σ to be the language

L* = { w ∈ Σ* | there is some n ∈ ℕ such that w ∈ Ln }.

ii. Let A and B be arbitrary languages over some alphabet Σ. Using your result from part (i) of this
problem and the formal definition of L*, prove that if X = AX ∪ B, then A*B ⊆ X.

4 / 6

Problem Six: Hard Reset Sequences
A hard reset sequence for a DFA is a string w with the following property: starting from any state in the
DFA, if you read w, you end up in the DFA's start state.

Hard reset sequences have many practical applications. For example, suppose you're remotely controlling
a Mars rover whose state you're modeling as a DFA. Imagine there's a hardware glitch that puts the Mars
rover into a valid but unknown state. Since you can't physically go to Mars to pick up the rover and fix it,
the only way to change the rover's state would be to issue it new commands. To recover from this mishap,
you could send the rover a hard reset sequence. Regardless of what state the rover got into, this procedure
would guarantee that it would end up in its initial configuration.

Here is an algorithm that, given any DFA, will let you find every hard reset sequence for that DFA:

1. Add a new start state qs to the automaton with ε-transitions to every state in the DFA.

2. Perform the subset construction on the resulting NFA to produce a new DFA called the power au-
tomaton.

3. If the power automaton contains a state corresponding solely to the original DFA's start state,
make that state the only accepting state in the power automaton. Otherwise, make every state in
the power automaton a rejecting state.

This process produces a new automaton that accepts all the hard reset sequences of the original DFA. It's
possible that a DFA won't have any hard reset sequences (for example, if it contains a dead state), in
which case the new DFA won't accept anything.

Apply the above algorithm to the following DFA and give us a hard reset sequence for that DFA. For sim-
plicity, please give the subset-constructed DFA as a transition table rather than a state-transition diagram.
We've given you space for the table over to the right, and to be nice, we've given you exactly the number
of rows you'll need.

q₀ q₁

q₂

Σ
 a

 b

a

 b

start

a b

Sample hard reset sequence: _______________________

5 / 6

Problem Seven: Complementing NFAs
In lecture, we saw that if you take a DFA for a language L and flip all the accepting and rejecting states,
you end up with a DFA for L.

Draw a simple NFA for a language L where flipping all the accepting and rejecting states does not pro-
duce an NFA for L. Briefly justify your answer; you should need at most a sentence or two here.

Problem Eight: DFAs, Formally
When we first talked about graphs, we saw them first as pictures (objects connected by lines), but then
formally defined a graph G as an ordered pair (V, E), where V is a set of nodes and E is a set of edges.
This rigorous definition tells us what a graph actually is in a mathematical sense, rather than just what it
looks like.

We've been talking about DFAs for a while now and seen how to draw them both as a collection of states
with transitions (that is, as a state-transition diagram) and as a table with rows for states and columns for
characters. But what exactly is a DFA, in a mathematical sense?

Formally speaking, a DFA is a 5-tuple (Q, Σ, δ, q₀, F), where

• Q is a finite set, the elements of which we call states;

• Σ is a finite, nonempty set, the elements of which we call characters;

• δ : Q × Σ → Q is the transition function, described below;

• q₀ ∈ Q is the start state;

• F ⊆ Q is the set of accepting states.

The transition function warrants a bit of explanation. When we've drawn DFAs, we've represented the
transitions either by arrows labeled with characters or as a table with rows and columns corresponding to
states and symbols, respectively. In this formal definition, the transition function δ is what ultimately spec-
ifies the transition. Specifically, for any state q ∈ Q and any symbol a ∈ Σ, the transition from state q on
symbol a is given by δ(q, a).

This question explores some properties of this rigorous definition.

i. Is it possible for a DFA to have no states? If so, define a DFA with no states as a 5-tuple, explain-
ing why your 5-tuple meets the above requirements. If not, explain why not.

ii. Is it possible for a DFA to have no accepting states? If so, define a DFA with no accepting states
as a 5-tuple, explaining why your 5-tuple meets the above requirements. If not, explain why not.

iii. In class, we said that a DFA must obey the rule that for any state and any symbol, there has to be
exactly one transition defined on that symbol. What part of the above definition guarantees this?

iv. Is it possible for a DFA to have a state that can't ever be reached (that is, a state that can't ever be
entered by any string)? If so, define a DFA with an unreachable state as a 5-tuple, explaining why
your 5-tuple meets the above requirements. If not, explain why not.

Going forward, in CS103, we won't use the formal definition of DFAs in our proofs, not because it's not
useful, but because it often makes the reasoning a bit harder to follow. However, we thought you should at
least see the definition, since it's useful for formalizing what a DFA actually is!

6 / 6

Problem Nine: Why the Extra State?
In our proof that the regular languages are closed under the Kleene closure operator (that is, if L is regu-
lar, then L* is regular), we used the following construction:

1. Begin with an NFA N where ℒ(N) = L.
2. Add in a new start state qstart.
3. Add an ε-transition from qstart to the start state of N.
4. Add ε-transitions from each accepting state of N to qstart.
5. Make qstart an accepting state.
6. Make every state besides qstart a rejecting state.

You might have wondered why we needed to add qstart as a new state to the NFA. It might have seemed
more natural to do the following:

1. Begin with an NFA N where ℒ(N) = L.
2. Add ε-transitions from each accepting state of N to the start state of N.
3. Make the start state of N an accepting state.
4. Make every other state of N a rejecting state.

Unfortunately, this construction does not work correctly.

Find a regular language L and an NFA N for L such that using the second construction does not create an
NFA for L*. Justify why the language of the new NFA isn't L*.

Extra Credit Problem: Why Finite? (1 Point Extra Credit)
The term “finite” in finite automata refers to the fact that each automaton can only have finitely many
states. It turns out there's a good reason for that.

We'll say that a deterministic infinite automaton, or DIA, is a generalization of a DFA in which the au-
tomaton has infinitely many different states. Formally speaking, a DIA is given by the same 5-tuple defini-
tion as a DFA from Problem Eight, except that Q must be an infinite set. Since DIAs have infinitely many
states, they can't actually be built, and so are mostly an object of purely theoretical study.

Prove that if L is an arbitrary language over an alphabet Σ, then there is a DIA that accepts L (that is, the
DIA accepts every string in L and rejects every string not in L.)

